Probing an Open CFTR Pore with Organic Anion Blockers
نویسندگان
چکیده
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts Cl- current. We explored the CFTR pore by studying voltage-dependent blockade of the channel by two organic anions: glibenclamide and isethionate. To simplify the kinetic analysis, a CFTR mutant, K1250A-CFTR, was used because this mutant channel, once opened, can remain open for minutes. Dose-response relationships of both blockers follow a simple Michaelis-Menten function with K(d) values that differ by three orders of magnitude. Glibenclamide blocks CFTR from the intracellular side of the membrane with slow kinetics. Both the on and off rates of glibenclamide block are voltage dependent. Removing external Cl- increases affinity of glibenclamide due to a decrease of the off rate and an increase of the on rate, suggesting the presence of a Cl- binding site external to the glibenclamide binding site. Isethionate blocks the channel from the cytoplasmic side with fast kinetics, but has no measurable effect when applied extracellularly. Increasing the internal Cl- concentration reduces isethionate block without affecting its voltage dependence, suggesting that Cl- and isethionate compete for a binding site in the pore. The voltage dependence and external Cl- concentration dependence of isethionate block are nearly identical to those of glibenclamide block, suggesting that these two blockers may bind to a common binding site, an idea further supported by kinetic studies of blocking with glibenclamide/isethionate mixtures. By comparing the physical and chemical natures of these two blockers, we propose that CFTR channel has an asymmetric pore with a wide internal entrance and a deeply embedded blocker binding site where local charges as well as hydrophobic components determine the affinity of the blockers.
منابع مشابه
CFTR Channel Pharmacology: Novel Pore Blockers Identified by High-throughput Screening
Investigators of anion channels are frequently heard bemoaning the absence of potent, specific inhibitors of their favorite channel. The lack of such blockers has been particularly frustrating for researchers investigating the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel, which plays a central role in electrolyte transport across epithelial tissues (Welsh et al., 2001)....
متن کاملIdentification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
Chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is inhibited by a broad range of substances that bind within a wide inner vestibule in the pore and physically occlude Cl(-) permeation. Binding of many of these so-called open-channel blockers involves electrostatic interactions with a positively charged lysine residue (Lys95) located in the pore...
متن کاملCFTR Channel Pharmacology
Investigators of anion channels are frequently heard bemoaning the absence of potent, specific inhibitors of their favorite channel. The lack of such blockers has been particularly frustrating for researchers investigating the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel, which plays a central role in electrolyte transport across epithelial tissues (Welsh et al., 2001)....
متن کاملCommentary Cystic Fibrosis Transmembrane Conductance Regulator
In the 8 yr since the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) was identified by means of positional cloning (Kerem et al., 1989; Riordan et al., 1989; Rommens et al., 1989), the Cl channel function of CFTR has been studied in a wide variety of expression systems. Macroscopic and single-channel currents have been measured and a large number of mutant construc...
متن کاملState-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore.
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is gated by intracellular factors; however, conformational changes in the channel pore associated with channel activation have not been identified. We have used patch clamp recording to investigate the state-dependent accessibility of substituted cysteine residues in the CFTR channel pore to a range of cysteine-reactiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 120 شماره
صفحات -
تاریخ انتشار 2002